The Large-Scale Environment of the Poleward-Flowing Leeuwin Current, Western Australia: Longshore Steric Height Gradients, Wind Stresses and Geostrophic Flow

1985 ◽  
Vol 15 (5) ◽  
pp. 481-495 ◽  
Author(s):  
J. S. Godfrey ◽  
K. R. Ridgway
1983 ◽  
Vol 34 (4) ◽  
pp. 547 ◽  
Author(s):  
JC Andrews

Data from five summer cruises off Western Australia are examined objectively using structure functions to establish principal length scales and amplitudes of mesoscale fields. Previous estimates of length scales using geopotential anomaly and geomagnetic electrokinetograph vectors as inputs to structure- function analyses gave length scales that differed by a factor of two. The present analysis shows that there are two length scales, which dominate in different parts of the flow, and this reconciles the two previous estimates. The shorter scale is λs = 157�25 km and the longer is λL = 309�28 km. Regions of strong large-scale currents have warm- and cold-core rings and mesoscale waves associated with them that assume the Rossby deformation scale. These are the λS structures. The longer, λL structures are found in regions of weak large-scale currents. Geopotential anomaly amplitudes and currents in the rings are, respectively, about 0.7 m2 s-2 (geopotential relief = 1 4 m2 s-1) and 70 cm s-1. Data from one summer cruise with a station density of approximately 12 per degree square are analysed in detail subjectively and the structure-function analysis is shown to be quantitatively meaningful. This cruise was near the shelf and shows the advection of low-salinity tropical water poleward over the slope in a narrow baroclinic current. Seaward cyclonic rings were associated with the current. The baroclinic structure of the current and of the rings is compatible with the winter behaviour of Lagrangian drifters released into the Leeuwin Current.


Author(s):  
Katrina West ◽  
Michael J. Travers ◽  
Michael Stat ◽  
Euan S. Harvey ◽  
Zoe T. Richards ◽  
...  

2015 ◽  
Vol 4 ◽  
pp. 71-94
Author(s):  
Greg Castillo

Aboriginal Australian contemporary artists create works that express indigenous traditions as well as the unprecedented conditions of global modernity. This is especially true for the founders of the Spinifex Arts Project, a collective established in 1997 to create so-called “government paintings”: the large-scale canvases produced as documents of land tenure used in negotiations with the government of Western Australia to reclaim expropriated desert homelands. British and Australian nuclear testing in the 1950s displaced the Anangu juta pila nguru, now known to us as the Spinifex people, from their nomadic lifeworld. Exodus and the subsequent struggle to regain lost homelands through paintings created as corroborating evidence for native title claims make Spinifex canvases not simply expressions of Tjukurpa, or “Dreamings,” but also artifacts of the atomic age and its impact on a culture seemingly far from the front lines of cold war conflict.


2006 ◽  
Vol 19 (10) ◽  
pp. 1948-1969 ◽  
Author(s):  
Matthew H. England ◽  
Caroline C. Ummenhofer ◽  
Agus Santoso

Abstract Interannual rainfall extremes over southwest Western Australia (SWWA) are examined using observations, reanalysis data, and a long-term natural integration of the global coupled climate system. The authors reveal a characteristic dipole pattern of Indian Ocean sea surface temperature (SST) anomalies during extreme rainfall years, remarkably consistent between the reanalysis fields and the coupled climate model but different from most previous definitions of SST dipoles in the region. In particular, the dipole exhibits peak amplitudes in the eastern Indian Ocean adjacent to the west coast of Australia. During dry years, anomalously cool waters appear in the tropical/subtropical eastern Indian Ocean, adjacent to a region of unusually warm water in the subtropics off SWWA. This dipole of anomalous SST seesaws in sign between dry and wet years and appears to occur in phase with a large-scale reorganization of winds over the tropical/subtropical Indian Ocean. The wind field alters SST via anomalous Ekman transport in the tropical Indian Ocean and via anomalous air–sea heat fluxes in the subtropics. The winds also change the large-scale advection of moisture onto the SWWA coast. At the basin scale, the anomalous wind field can be interpreted as an acceleration (deceleration) of the Indian Ocean climatological mean anticyclone during dry (wet) years. In addition, dry (wet) years see a strengthening (weakening) and coinciding southward (northward) shift of the subpolar westerlies, which results in a similar southward (northward) shift of the rain-bearing fronts associated with the subpolar front. A link is also noted between extreme rainfall years and the Indian Ocean Dipole (IOD). Namely, in some years the IOD acts to reinforce the eastern tropical pole of SST described above, and to strengthen wind anomalies along the northern flank of the Indian Ocean anticyclone. In this manner, both tropical and extratropical processes in the Indian Ocean generate SST and wind anomalies off SWWA, which lead to moisture transport and rainfall extremes in the region. An analysis of the seasonal evolution of the climate extremes reveals a progressive amplification of anomalies in SST and atmospheric circulation toward a wintertime maximum, coinciding with the season of highest SWWA rainfall. The anomalies in SST can appear as early as the summertime months, however, which may have important implications for predictability of SWWA rainfall extremes.


2006 ◽  
Vol 57 (3) ◽  
pp. 291 ◽  
Author(s):  
Mun Woo ◽  
Charitha Pattiaratchi ◽  
William Schroeder

The Ningaloo Current (NC) is a wind-driven, northward-flowing current present during the summer months along the continental shelf between the latitudes of 22° and 24°S off the coastline of Western Australia. The southward flowing Leeuwin Current is located further offshore and flows along the continental shelf break and slope, transporting warm, relatively fresh, tropical water poleward. A recurrent feature, frequently observed in satellite images (both thermal and ocean colour), is an anti-clockwise circulation located offshore Point Cloates. Here, the seaward extension of the coastal promontory blocks off the broad, gradual southern shelf, leaving only a narrow, extremely steep shelf to the north. The reduction in the cross-sectional area, from the coast to the 50 m contour, between southward and northward of the promontory is ~80%. Here, a numerical model study is undertaken to simulate processes leading to the development of the recirculation feature offshore Point Cloates. The numerical model output reproduced the recirculation feature and indicated that a combination of southerly winds, and coastal and bottom topography, off Point Cloates is responsible for the recirculation. The results also demonstrated that stronger southerly winds generated a higher volume transport in the NC and that the recirculation feature was dependent on the wind speed, with stronger winds decreasing the relative strength of the recirculation.


1984 ◽  
Vol 35 (4) ◽  
pp. 487 ◽  
Author(s):  
DJ Rochford

Comparison of long-term mean monthly sea surface temperatures of coastal waters at comparable latitudes off south-eastern and south-westem Australia shows that, during the duration of the Leeuwin Current in autumn and winter, sea surface temperatures are 1-3�C higher off south-western Australia.


Sign in / Sign up

Export Citation Format

Share Document